师资队伍

陈冲

信息来源: 发布日期: 2020-07-25


陈冲Chong Chen),博士生导师,教授,河南大学校特聘教授, 河南省高校科技创新人才。钙钛矿太阳能电池/水系锌离子电池/二维材料和忆阻器课题组组长,目前课题组主要从事光伏材料和新型太阳能电池、水系锌离子电池、二维材料和忆阻器等方面的研究,陈冲现为SCI期刊《International Journal of Minerals, Metallurgy and Materials青年编委、《Advanced Energy Conversion Materials期刊编委,已经主持国家自然科学基金项目2项和省部级项目2项,已经发表SCI论文60余篇,其中以第一作者或通讯作者在《Advanced Energy Materials》、《InfoMat》、《Advanced Functional Materials》、《Nano Today》、《EcoMat》、《Nano Energy》、《J. Mater. Chem. A/C 》、《ACS Applied Materials & Interfaces》、《J. Power Sources》、《Solar Rrl等国际知名期刊上发表SCI收录论文40余篇,授权国家发明专利10余项。与此同时,担任Advanced MaterialsAdvanced Energy MaterialsAdvanced Functional MaterialsEcoMatJournal of Materials Chemistry AACS applied materials and interfaces等多个国际著名杂志的审稿人。


教育及工作经历:

20009月至20047月在湖北大学物理与电子学院,攻读学士学位;

20047月至20097月在中国科学院等离子体物理研究所攻读硕士和博士学位;

2010年至20113月在韩国高等科学技术研究所(Korea Advanced institute of Science and technology, South Korea)进行博士后研究;

20113月至201110月在美国南达科塔州立大学(South Dakota State University, SD,USA) 从事博士后研究;

20176月至20186月,在美国匹兹堡大学(University of Pittsburgh, USA)国家基金委全额资助教授访学;

20127月至今,20127月河南大学高层次人才引进,特聘教授。2013年至2017年成立武汉鑫神光电科技有限公司,任技术总监。


主要研究方向:

光伏材料与器件和阻变存储器


主持重要研究项目:

(1) 国家自然科学基金青年项目,国家自然科学基金地方联合项目,省部级重点资助项目,61704048,硫化镉对CH3NH3PbI3/硫化镉体型异质结太阳能电池中电荷产生和输运机制的影响,立项时间20181月,25万元,主持;

(2)  国家自然科学基金青年项目,国家自然科学基金地方联合项目,省部级重点资助项目,U1404616,基于透明的双面TiO2纳米管/ITO电极的CdS/CuInS2量子点敏化太阳能电池研究,立项时间20151月,30万元,主持;

(3)  河南省科技厅重点研发与推广项目,新立项,基于无定型络合分子/钙钛矿复合薄膜的高效稳定钙钛矿太阳能电池,立项时间202211日,10万元,主持;

(4)  河南省高校创新人才,19HASTIT049,基于TiO2多孔结构的钙钛矿/硫化镉体异质结钙钛矿太阳能电池性能研究,立项时间20186月,60万元,主持;

(5)  省部级一般经费资助项目,省辖市级重点和人才项目,162102410083,基于甲胺铅碘/铜铟硫体异质结钙钛矿太阳能电池的低温溶液法制备与性能的研究,立项时间20161月,主持。


代表性论文:

1. H. Li, F. Li, C. Chen,*et al, Strategies for high-performance perovskite Solar Cells from materials, film engineering to carrier dynamics and photon management, InfoMat, 2022, (Accepted )

2. Q. Lou, C. Liu,* C.Chen, *  Z. Ge,* et al. π-conjugated small molecules modified SnO2 layer for perovskite solar cells with over 23% efficiency, Advanced Energy Materials 2021, 2101416

3. H. Li, F. Li, Q. Lou, Z. Shen, C. Chen,* et al, Photoferroelectric perovskite solar cells: principles, advances and insights. Nano  Today, 2021, 37, 101062.

4. Q. Lou, H. Li, Q. Huang, Z. Shen, F. Li, Q. Du, M. Jin, C. Chen, * Multifunctional CNT:TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. EcoMat 2021, 3, e12099.

5. F. Li, Z. Shen, Y. Weng, Q. Lou, C. Chen,* Liang Shen, Wenbin Guo, Guangyong Li.* Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability. Advanced Functional Materials, 2020, 4, 2004933.

6. C. Chen,* L. Fumin, L. Zhu, Z. Shen, Y. Weng, Q. Lou, F. Tan, G. Yue, Q. Huang, M. Wang, Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: defect passivation and moisture/oxygen blocking. Nano Energy, 2020, 68, 104313.

7. L. Zhu, C. Chen,* F. Li, Z. Shen, Y. Weng, Q. Huang, * Mingtai. Wang.* Enhancing efficient and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into CH3NH3PbI3 active layer, Journal of Materials Chemistry A, 2019, 7, 1124-1137.

8. Q. Lou, G. Lou, R. Peng, Z. Liu, W. Wang, M. Ji, C. Chen,* X. Zhang, C. Liu* and Z. Ge,* Synergistic effect of lewis base polymers and graphene in enhancing the efficiency of perovskite solar cells. ACS Appl. Energy Mater., 2021, 4, 3928-3936.

9. J. W. Chen, Z. Y. Wan, J. D. Liu, S. Q. Fu, F. P. Zhang, S. F. Yang, S. W. Tao, M. T. Wang and C. Chen*, Growth of compact CH3NH3PbI3 thin films governed by the crystallization in Pbl2 matrix for efficient planar perovskite solar cells. ACS Applied Materials & Interfaces, 2018, 10, 8649-8658.

10. C. Chen*, Y. Zhai, F. Li, F. Tan, G. Yue, W. Zhang and M. Wang, High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. Journal of Power Sources, 2017, 341, 396-403.

11. F. Li, M. Ji, Q. Du, J. Zheng, M. Jin, Z. Shen, H. Li, C. Chen,* Effect of (CH3)2Sn(COOH)2 electron transport layer thickness on device performance in n-i-p planar heterojunction perovskite solar cells. J. Phys. Chem. C, 2021, 125, 7552-7559.  

12. C. Chen*,Y. Zhai, F. Li and G. Yue, Fabrication of silver sulfide thin films for efficient organic solar cells with high short-circuit currents based on double heterojunctions. Journal of Power Sources, 2015, 298, 259-268.

13. C. Chen*, G. Ali, S. H. Yoo, J. M. Kum and S. O. Cho, Improved conversion efficiency of cds quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. Journal of Materials Chemistry, 2011, 21, 16430-16435.  

14. F. Wu, * R. Pathak, C. Chen,* Y. Tong, H. Xu, T. Zhang, R. Jian, X. Li and Q. Qiao *, Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles. Electrochim. Acta, 2020, 354, 136660.

15. W. Chen, J. Qi, C. Dong, J. Chen, Z. Shen, Y. He, S. yang, Tao Chen, C. Chen,* Y. Li*, M.   Li,*. Solution-Processed in Situ Growth of CuInS2 Nanoparticle Films for Efficient Planar Heterojunction Solar Cells with a Dual Nature of Charge Generation. ACS Applied Energy Materials, 2019, 2 (7), 5231-5242.

16. Y. Weng, Z. Shen,  M. Guo, F. Wu, F. Li, L. Zhu, L. Ling, C. Chen,* Electric dipole moment-assisted charge extraction and effective defect passivation in perovskite solar cells by depositing PCBM:TIPD blend film on CH3NH3PbI3 layer.  Journal of Materials Chemistry C, 2019, 7, 11559-11568

17. L. Zhu, C. Chen ,* Y. Weng, F. Li and Q. Lou, Enhancing the performance of inverted   perovskite solar cells by inserting a zno:Tipd film between pcbm layer and ag electrode. Solar Energy Materials and Solar Cells, 2019, 198, 11-18.

18. M. Guo, F. Li, L. Ling and C. Chen*, Electrochemical and atomic force microscopy investigations of the effect of cds on the local electrical properties of CH3NH3PbI3:CdS perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 12112-12120.

19. C. Chen*, G. Ali, S. H. Yoo, J. M. Kum and S. O. Cho, Improved conversion efficiency of cds quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. Journal of Materials Chemistry, 2011, 21, 16430-16435.

20. C. Chen*, R. Peng, H. Wu and M. Wang, Electric field effects on charge transport  in polymer/TiO2 photovoltaic cells investigated by intensity modulated photocurrent spectroscopy. Journal of Physical Chemistry C, 2009, 113, 12608-12614.  

21. C. Chen*, M. Wang and K. Wang, Characterization of polymer/TiO2 photovoltaic cells by intensity modulated photocurrent spectroscopy. Journal of Physical Chemistry C, 2009, 113, 1624-1631.

22. F. Li*, M. Xu, X. Ma, L. Shen, L. Zhu, Y. Weng, G. Yue, F. Tan and C. Chen*,  Uv treatment of low-temperature processed SnO2 electron transport layers for planar perovskite solar cells. Nanoscale Research Letters, 2018, 13, 216.

23. Y. Zhai, F. Li, M. Guo and C. Chen*, Comparison of performance and stability  of perovskite solar cells with CuInS2 and PH1000 hole transport layers fabricated in a humid atmosphere. Journal of Nanoparticle Research, 2017, 19, 384.

24. C. Chen*, L. Ling and F. Li, Double-sided transparent TiO2 nanotube/ITO electrodes for efficient CdS/CuInS2 quantum dot-sensitized solar cells. Nanoscale Research Letters, 2017, 12. 4.

25. Y. Zhai, F. Li, L. Ling and C. Chen*, A comparative study of the effects of Ag2S films prepared by mpd and hrtd methods on the performance of polymer solar cells. Applied Surface Science, 2016, 384, 217-224.

26. C. Chen*, Y. Zhai, F. Li and L. Ling, Photocurrent enhancement of the CdS/TiO2/ITO photoelectrodes achieved by controlling the deposition amount of Ag2S nanocrystals. Applied Surface Science, 2015, 356, 574-580.

27. C. Chen*, Y. Zhai, C. Li and F. Li, Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber. Nanoscale Research Letters, 2014, 9, 605.

28. C. Chen*, L. Wang, F. Li and L. Ling, Improving conversion efficiency of cds quantum dots-sensitized TiO2 nanotube arrays by doping with Zn2+ and decorating with ZnO nanoparticles. Materials Chemistry and Physics, 2014, 146, 531-537.

29. F. Li, C. Chen*, F. Tan, C. Li, G. Yue, L. Shen and W. Zhang, Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on fto and MoO3/Ag/MoO3transparent electrode. Nanoscale Research Letters, 2014, 9, 1-5.

30. C. Chen*, F. Li, G. Li, F. Tan, S. Li and L. Ling, Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. Journal of Materials Science, 2014, 49, 1868-1874.

31. F. Li, C. Chen*, F. Tan, G. Yue, L. Shen and W. Zhang, A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT: PCBM layer for the improvement of efficiency of inverted polymer solar cells. Nanoscale Research Letters, 2014, 9, 240.

32. C. Chen*, F. Li, F. Wu, F. Tan, Y. Zhai and W. Zhang, Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions. Nanoscale Research Letters, 2014, 9, 457.

33. C. Chen* and F. Li, Improving the efficiency of ito/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots. Nanoscale Research Letters, 2013, 8, 453.

34. C. Chen*, Y. Xie, G. Ali, S. H. Yoo and S. O. Cho, Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using zno energy barrier layer. Nanotechnology, 2011, 22. 015202  

35. C. Chen*, F. Wu, H. Geng, W. Shen and M. Wang, Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices. Nanoscale Research Letters, 2011, 6, 350.  

36. C. Chen*, Y. Xie, G. Ali, S. H. Yoo and S. O. Cho, Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Research Letters, 2011, 6, 462


授权发明专利:

1.陈冲,朱良欣,李福民,一种钙钛矿太阳能电池及制备方法,中国,申请日期:2019年,授权日期:2020年,发明专利号:ZL 201910080152.X.

2. 李福民,陈冲,岳根田,徐梦琦,朱良欣,翁玉娟,一种超低温稳定的平板钙钛矿太阳能电池及其制备方法, 中国, 申请日期:2018年,授权日期:2020年,发明专利号:201810518927 .2.

3. 陈冲; 翟勇, 一种钙钛矿太阳能电池及其制备方法,申请日期:2015813日,授权日:2017616日。 中国,发明专利号:ZL 2015 1 0495345.3

4. 陈冲; 翟勇; 李福民,一种基于介孔结构铜铟硫的钙钛矿太阳能电池及其制备方法 , 申请日期:2015122,授权日:2017623日,中国, 发明专利号:ZL 2015 1 0032013.1

5. 陈冲;王敏;刘文强,一种在钙钛矿层中掺入硫化镉的钙钛矿太阳能电池及其制备方法,申请日期2015812日,授权日期:20171215日, 中国, 发明专利号:ZL201510494901.5

6. 陈冲; 刘振樊; 何舟;一种低温全溶液法制备钙钛矿太阳能电池的方法申请日期:201473,授权日期:201668日, 中国, ZL201410317901.3  

7. 李洪伟;陈冲;刘振樊; 何舟; 王敏,一种铜铟硫/钙钛矿体异质结太阳能电池及其制备方法 , 申请日期:201473日,授权日期:2016824, 中国, 发明专利号:ZL201410315452.9  

8. 王敏;陈冲;李洪伟; 何舟; 刘振樊,一种硫化银/钙钛矿体异质结太阳能电池及其制备方法 , 申请日期2014728日,授权日期:2016413日, 中国, 发明专利号:ZL201410364933.9

9. 刘振樊;陈冲;李洪伟;何舟;王敏,一种在钙钛矿材料太阳能电池上制备银电极的方法,申请日期201479日,授权日期:2017714日, 中国, 发明专利号:ZL201410325031.4  


获奖

2021年河南省教育厅科技优秀论文一等奖。

2021年河南省科学技术成果论文奖二等奖。


邮箱:chongchen@henu.edu.cn


    • 上一篇:没有了!
    • 下一篇: 陈石